THERAPEUTICS

SWALLOWTAIL: An Open-Label Extension (OLE) Study for Children and Adolescents with Dravet Syndrome (DS) who Previously Participated in a Study of Antisense Oligonucleotide (ASO) STK-001

swallowtail EXTENSION STUDY

Colin Roberts¹, Scott Perry², Joseph Sullivan³, Matt Lallas⁴, Orrin Devinsky⁵, Kelly G. Knupp⁶, Linda Laux⁷, John Schreiber⁸, Javier Avendaño⁹, Charlene Brathwaite⁹, Jessie Lynch⁹, James Stutely⁹, Nancy Wyant⁹, Meena⁹, Kimberly A. Parkerson⁹, Barry Ticho⁹

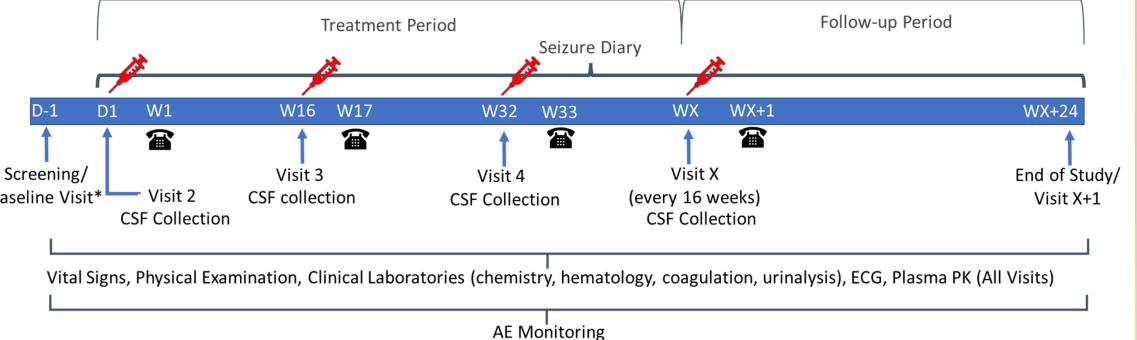
¹OHSU; ²Cook Children's; ³UCSF; ⁴Nicklaus Children's Hospital; ⁵NYU Langone, ⁶Children's Hospital Colorado, ⁷Ann & Robert H Lurie Children's Hospital of Chicago; ⁸Children's National Hospital; ⁹Stoke Therapeutics

INTRODUCTION

- DS is a severe and progressive genetic epilepsy characterized by frequent, prolonged, and refractory seizures, typically beginning within the first year (y) of life
- Available therapies do not adequately control seizures in 90% of patients with DS, and they do not address other comorbidities, including intellectual disability, ataxia/motor abnormalities, behavioral problems, speech impairment, sleep disturbances, and a high risk for sudden unexplained death
- Disease complications often contribute to a poor quality of life for patients and their caregivers
- In approximately 85% of cases, DS is caused by spontaneous, heterozygous loss of function mutations in the SCN1A gene, which encodes the voltage-gated sodium channel type 1 α subunit (Na_v1.1) protein
- Upregulating Na_v1.1 protein may restore functioning neurons and prevent seizures and reduce non-seizure related comorbidities in DS

STK-001

- The proprietary TANGO (Targeted) Augmentation of Nuclear Gene Output) platform aims to increase protein production from the healthy gene
- In DS, patients have one functional gene (wild type) copy and one mutated copy, resulting in half as much protein as needed to maintain health
- STK-001 is an investigational proprietary ASO designed to upregulate Na_v1.1 protein expression by leveraging the non-mutant (wild type) copy of SCN1A to restore physiological Na_v1.1 protein levels (See Figure 1 in QR code)
- SČN1A is transcribed into pre-messenger RNA (pre-mRNA) that is spliced to generate productive mRNA (which is translated into Na_v1.1 protein) and non-productive mRNA due to the inclusion of an exon that leads to nonsense-mediated mRNA decay (NMD) TANGO ASOs bind to specific stretches of SCN1A pre-mRNA to prevent the inclusion of the non-productive exon thereby increasing productive mRNA level
- Increased level of productive mRNA from the functional gene copy increases Na_v1.1 protein production restoring it to near normal levels
- STK-001 may be the first disease-modifying therapy to address the genetic cause of DS by upregulating Na_V1.1 protein levels


STUDY DESIGN AND ASSESSMENTS

OLE study conducted at 18 sites in the US (NCT04740476) following participation in Single (SAD) or Multiple Ascending Dose (MAD) study, MONARCH (NCT04442295; **See poster 1.227)**

Each patient initially receives 3 intrathecal (IT) doses of STK-001, once every 4 months (m) with study duration approximately 15m; patients may continue treatment beyond 3 doses, every 4m until end of study

Patients receive the same dose level they received in MONARCH, or the dose recommended by the Safety Monitoring Committee; highest dose may not exceed 30mg/dose

Outcome Measures Included in this Analysis Safety and tolerability Treatment emergent AEs (TEAEs) Pharmacokinetics (PK) STK-001 plasma concentrations Cerebrospinal Fluid (CSF) STK-001 CSF concentrations

Concomitant Medication Recording

SAFETY

Number (N (%)) of Patients with	2-12y N=9	13-18y N=15	Total N=24
TEAEs	8 (88.9)	11 (73.3)	19 (79.2)
TEAE related to study drug (all mild or moderate)	1 (11.1)	3 (20.0)	4 (16.7)
TEAE related to CSF or study drug administration (all mild)	1 (11.1)	7 (46.7)	8 (33.3)
≥Grade 3 TEAE	1 (11.1)	0	1 (4.2)
≥Grade 3 TEAE related to study drug	0	0	0
Serious TEAE	2 (22.20)*	0	2 (8.30)
Serious TEAE related to study drug	0	0	0

*2 patients experienced 6 serious TEAEs: COVID-19 (2), status epilepticus (3), and respiratory failure; all resolved

Preferred Term N (%) 9 (37.5) COVID-19 5 (20.8) **Nasal congestion Post lumbar puncture** 5 (20.8) syndrome 4 (16.7) **Pyrexia** Diarrhea 3 (12.5) 3 (12.5) **Puncture site pain** Headache 2 (8.30) **Status epilepticus** 2 (8.30)

TEAEs Reported in >1 Patient

Treatment-Related TEAES		
Preferred Term	N (%)	
SF protein increased	1 (4.2)	
ritability	1 (4.2)	
ain in extremity	1 (4.2)	
omnolence	1 (4.2)	

DEMOGRAPHICS, DISPOSITION AND EXPOSURE

	50, 5101 5		
Demographics (I	N=24)		
Age at Screening, y			
Mean (SD)	11.7 (4.93)		
Median (min, max)	13.0 (2, 18)		
Age Group, N	(%)	1	
2–12y	9 (37.5)		
13–18y	15 (62.5)		
Sex		Ŀ	
Female, n (%)	13 (54.2)		
Race, N (%)*			
Asian	2 (8.3)		
Black or African American	3 (12.5)		
White	19 (79.2)	*	
Prefer not to answer	2 (8.3)	r	
Ethnicity, N (%)			

otal STK-001 doses administered (N=24)			
10mg	10		
20mg	14		
30mg	32		

Not Hispanic/Latino 20 (83.3)

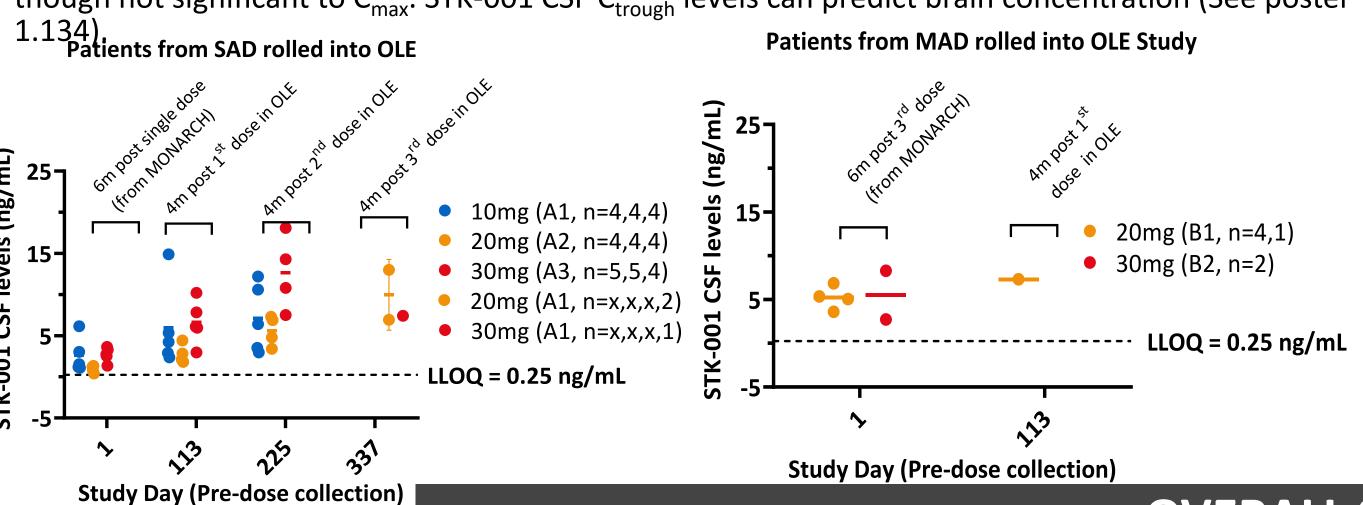
Data cutoff: 11Jul2022

45mg

Patient Disposition Enrolled (% total Assigned Cohort patients Ongoing who (MONARCH) completed MONARCH) 5 (100.0) 10mg SAD* 20mg SAD 4 (100.0) 7 (100.0) 30mg SAD 2 (100.0) 45mg SAD 4 (80.00) 20mg MAD 2 (100.0) 30mg MAD

*1 patient in 10mg SAD cohort received an incorrect STK-001 dose in MONARCH but received 3 correct doses in SWALLOWTAIL

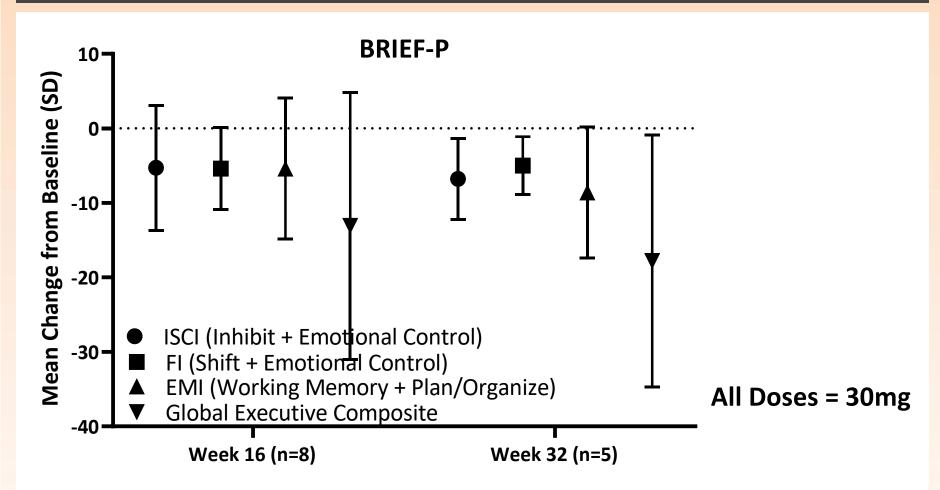
ACKNOWLEDGEMENTS


This study is supported by Stoke Therapeutics. We

thank investigators, health care providers, research

staff, patients, and caregivers who participated.

PLASMA PK AND CSF EXPOSURE


- Pre-dose STK-001 plasma levels (not shown) were near lower limit of quantification (LLOQ) indicating no accumulation at this regimen
- Mean STK-001 CSF levels at 6m post single dose (SAD end of study) were lower than those at 6m-post 3m doses (MAD end of study)
- Dose-dependent increase in CSF C_{trough} levels was observed from 20mg 30mg across all cohorts
- After every 4m dosing, slight STK-001 accumulation in CSF was observed for 10-30 mg for 3 doses though not significant to C_{max} . STK-001 CSF C_{trough} levels can predict brain concentration (See poster

BRIEF-P

Viral infection

Vomiting

Similar changes were not observed in BRIEF-P assessment in the BUTTERFLY Natural History Study (See poster #1.228)

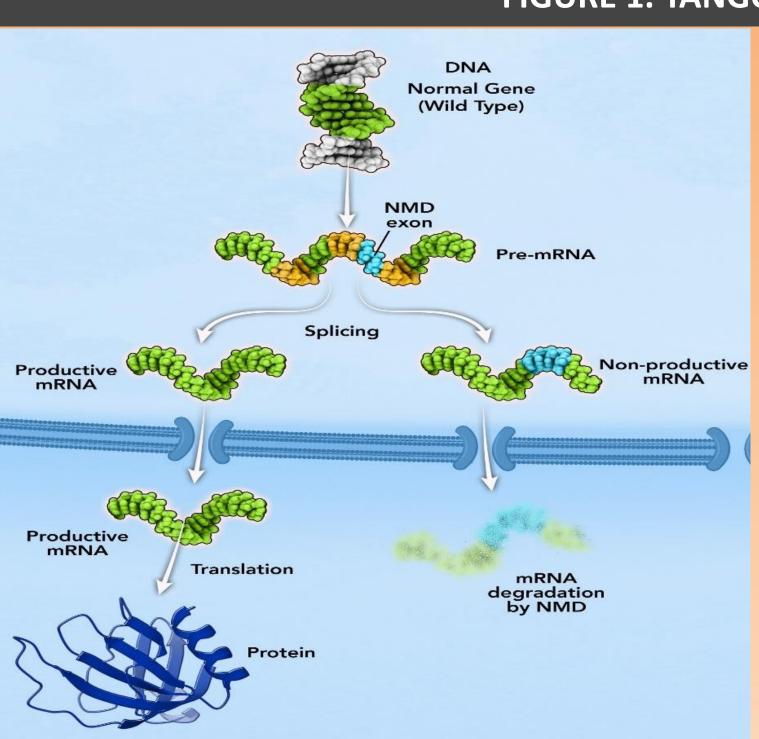
OVERALL SUMMARY

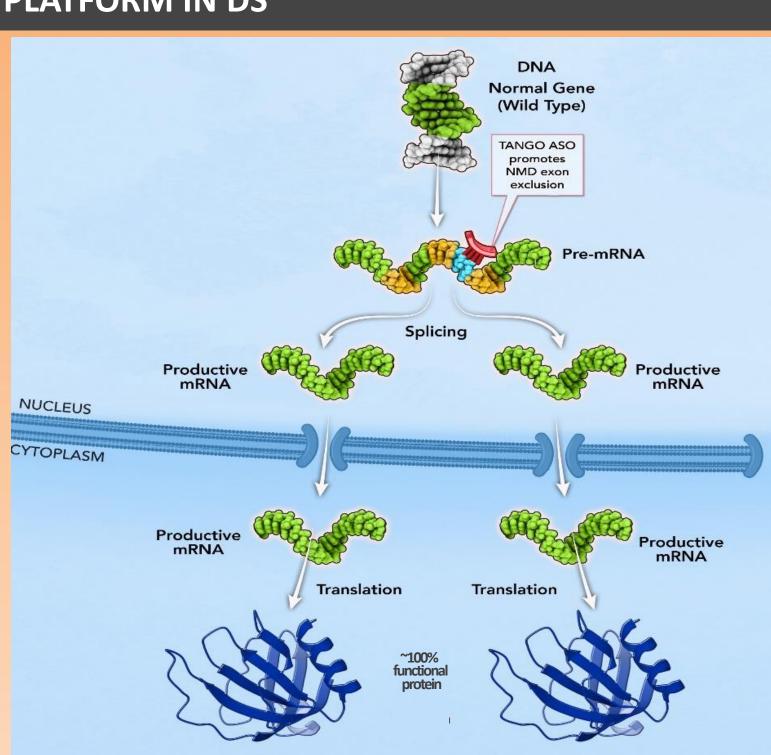
- 24 of 25 (96%) patients who completed MONARCH enrolled in SWALLOWTAIL
- Patients received up to 5 doses of STK-001 ranging from 10mg 45mg/dose in SWALLOWTAIL • Multiple doses of STK-001 up to 45mg/dose given every 4m IT appear to be well tolerated
- Following every 4m dosing at 10 30mg for 3 doses, low CSF C_{trough} levels do not add significantly to C_{max} (predicted maximum STK-001 concentration in CSF). CSF C_{trough} levels indicate potential for every 4-6m dosing.
- A trend toward improvement in non-seizure measures of disease has been observed among a small group of evaluable patients in SWALLOWTAIL. Results support long-term use of STK-001 in patients with DS.

2 (8.30)

2 (8.30)

SWALLOWTAIL: An Open-Label Extension (OLE) Study for Children and Adolescents with Dravet Syndrome (DS) who Previously Participated in a Study of Antisense Oligonucleotide (ASO) STK-001


swallowtail


A DRAVET SYNDROME
EXTENSION STUDY

Colin Roberts¹, Scott Perry², Joseph Sullivan³, Matt Lallas⁴, Orrin Devinsky⁵, Kelly G. Knupp⁶, Linda Laux⁷, John Schreiber⁸, Javier Avendaño⁹, Charlene Brathwaite⁹, Jessie Lynch⁹, James Stutely⁹, Nancy
Wyant⁹, Meena⁹, Kimberly A. Parkerson⁹, Barry Ticho⁹

¹OHSU; ²Cook Children's; ³UCSF; ⁴NeuroNetwork Partners; ⁵NYU Langone, ⁶Children's Hospital Colorado, ⁷Ann & Robert H Lurie Children's Hospital of Chicago; ⁸Children's National Hospital; ⁹Stoke Therapeutics

FIGURE 1. TANGO PLATFORM IN DS

STUDY POPULATION

≥2.5 years of age

Key Inclusion Criteria

- Must have completed dosing with STK-001 and the MONARCH end of study visit, with an acceptable safety profile per investigator judgment
- Must have completed MONARCH within 4 weeks of starting participation in this study, unless approved by Sponsor

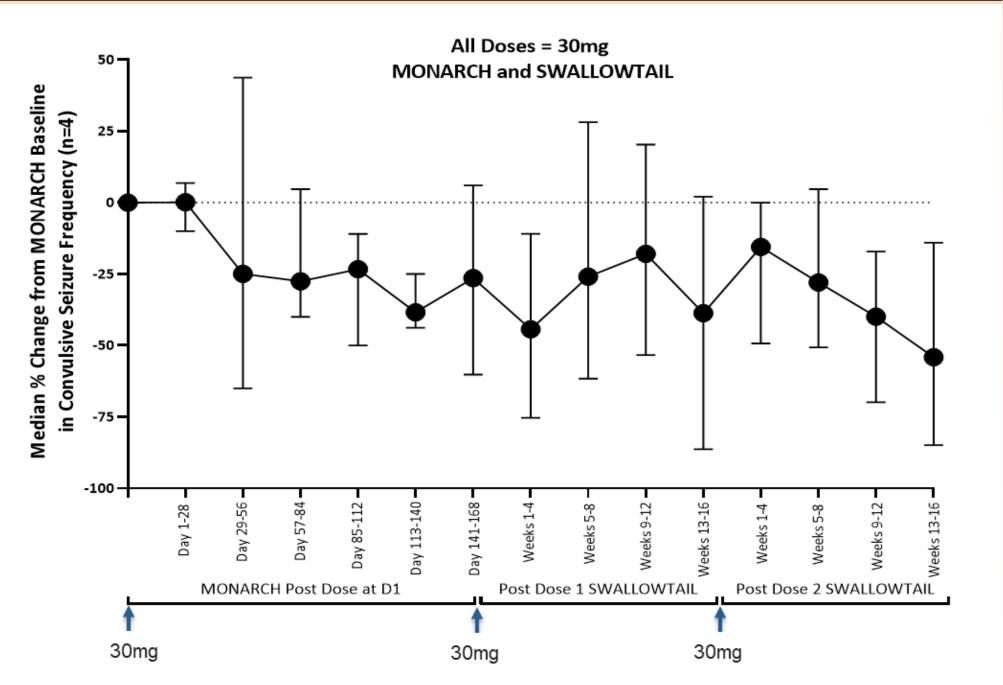
Key Exclusion Criteria

- Met any withdrawal criteria in MONARCH
- Currently being treated with an antiepileptic drug acting primarily as a sodium channel blocker, as maintenance treatment
- Clinically significant unstable medical condition(s) other than epilepsy
- Clinically relevant symptoms or a clinically significant illness in 4 weeks prior to screening or dosing on day 1, other than epilepsy
- Clinically significant abnormal laboratory values at baseline
- Any other significant disease or disorder, in investigator's opinion, that may put patient at risk, influence study results, or affect patient's ability to participate
- Been treated (or is being treated) with an investigational product (other than STK-001) since participating in MONARCH

STK-001 DOSES ADMINISTERED

Patient Exposure (N=24)						
Assigned Dose Cohort (MONARCH)	Administered Dose Level (SWALLOWTAIL)	1 st Dose	2 nd Dose	3 rd Dose	4 th Dose	5 th Dose
10mg SAD*	10mg	5	5			
	20mg			4	1	
	30mg			1	2	1
	45mg					1
20mg SAD	20mg	4	4			
	30mg			4	1	
	45mg				1	
30mg SAD	30mg	7	5	4		
	45mg			1		
45mg SAD	45mg	2				
20mg MAD	20mg	1				
	30mg	3	2			
	45mg		2	1		
30mg MAD	30mg	2				

REFERENCES


Dravet C, et al. *Epilepsia*. 2011;52(suppl 2):3-9; Harkin LA, et al. *Brain*. 2007;130:843-852; Kluckova D, et al. *Sci Rep*. 2020;10:10288; Escayg A, Goldin AL. *Epilepsia*. 2010;51(9):1650-1658; Wengert E, et al. *AES* 2020.

MORE INFORMATION

To find out more about Stoke Therapeutics, please visit www.stoketherapeutics.com.

By contacting us, your patient is under no obligation to take part in the study.

CONVULSIVE SEIZURE FREQUENCY

No exclusions for AED modification