Flavoprotein fluorescence in the 24-month FALCON natural history study of autosomal dominant optic atrophy: A potential biomarker for mitochondrial dysfunction

ARVO 2025 Annual Meeting

Marcela Votruba^{1,2}, Steven Gross³, Byron L. Lam⁴, Yaping Joyce Liao⁵, Raghu Mudumbai⁶, Kelly Saluti³, Barry Ticho³, Yue Wang³, Patrick Yu-Wai-Man^{7–9}

¹School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom; ²Cardiff Eye Unit, University Hospital of Wales, Cardiff, United Kingdom; ³Stoke Therapeutics, Bedford, Massachusetts, United States; ⁴Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States; ⁵Byers Eye Institute, Stanford University, Palo Alto, California, United States; ⁶Department of Ophthalmology, University of Washington, Seattle, Washington, United States; ⁷Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; ⁸Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; ⁹Institute of Ophthalmology, University College London, London, United Kingdom.

Presenter disclosures: Research support from Fight for Sight UK. Consulting fees from Transine Therapeutics, Chiesi Pharmaceuticals and Stoke Therapeutics in the last 3 years. Travel support from Stoke Therapeutics and Chiesi Pharmaceuticals.

ADOA is an inherited, progressive optic neuropathy primarily caused by mutations in the OPA1 gene

1 in **35,000** people are affected globally^{1*}

>400 different *OPA1* gene mutations have been reported in patients with ADOA²

46% of patients are registered as legally blind¹
80% of patients are symptomatic by age 10¹

65-90%

of cases are caused by mutations in *OPA1* gene³ 50%

OPA1 protein expression and disease manifestation

ADOA NATURAL HISTORY STUDY

FALCON is a fully-enrolled 24-month multicenter natural history study in patients with ADOA⁺

- **OPA1 protein** is essential for proper mitochondrial function
- Mitochondrial stress can be measured in patients with ADOA and is believed to correlate with disease progression
- FALCON aims to provide a better understanding of how ADOA disease parameters change over time to inform potential future interventional clinical trials

*Incidence in Denmark estimated to be closer to 1 in 10,000 due to founder effect. [†]FALCON study design – 10 sites: 5 USA, 2 Italy, 2 UK, 1 Denmark. Assessments taken at baseline, 6-, 12-, 18-, 24-month visits. Last patient visit scheduled for July 2025. ADOA, autosomal dominant optic atrophy; OPA1, OPA1 mitochondrial dynamin like GTPase.

1. Yu-Wai-Man P et al. Ophthalmology 2010; 117 (8): 1538–1546. 2. Le Roux B et al. Orphanet J Rare Dis 2019; 14 (1): 214. 3. Chun BY et al. Curr Opin Ophthalmol 2016; 27 (6): 475–480.

FALCON baseline demographics

Baseline demographics		8–17 years (n=15)	18–40 years (n=21)	41–60 years (n=11)	Total (N=47)
Age at screening (years)	mean (SD)	13.0 (2.9)	28.2 (6.2)	48.3 (6.0)	28.1 (14.1)
	median	14.0	29.0	48.0	27.0
	min–max	8–17	18–37	41–59	8–59
Sex (female)	n (%)	8 (53.3)	7 (33.3)	6 (54.5)	21 (44.7)
logMAR	mean	0.53	0.45	0.85	0.57
	min–max	0.3–0.9	-0.1–1.0	0.3–1.6	-0.1–1.6
GCL/IPL global thickness	mean (SD)	15.8 (2.6)	15.3 (2.3)	14.4 (1.3)	15.2 (2.2)
RNFL global thickness	mean (SD)	70.6 (12.5)*	64.9 (13.5)	56.4 (9.2)	64.5 (13.1) ⁺

OPA1 genotype	n (%)		
Nonsense	36 (74.5)		
Missense	9 (17.0)		
Splicing	2 (4.3)		
TOTAL	47 (100.0) [‡]		

*n=13. *†*N=45. *[‡]OPA1* genotype total only includes patients who completed at least one post-baseline visit.

BCVA, best-corrected visual acuity; GCL, ganglion cell layer; IPL, inner plexiform layer; OPA1, OPA1 mitochondrial dynamin like GTPase; RNFL, retinal nerve fiber layer; SD, standard deviation.

Minimal changes in VA are observed over 12 months in patients with ADOA

Data confirm that ADOA is a slowly progressing optic neuropathy with limited disease progression over 12 months

Decline in LCVA (2.5%) is detected over 12 months in patients with ADOA with good baseline VA

Patients with the highest baseline VA experience the greatest decline (up to 5 letters) in LCVA over 12 months

Month 12 data cut: July 31, 2024.

*Mean ETDRS letter change in LC (2.5%) VA and standard deviations are plotted on the graphs. †n=15 and 14 at 6 months and 12 months, respectively

ADOA, autosomal dominant optic atrophy; ETDRS, Early Treatment Diabetic Retinopathy Study; LC, Iow contrast; LCVA, low-contrast visual acuity; logMAR, log of the minimum angle of resolution; VA, visual acuity.

Minimal changes in RNFL thickness are observed over 12 months in patients with ADOA

Given the minimal change in RNFL thickness in patients with ADOA, factors other than retinal ganglion cell loss are likely responsible for the decline in LCVA

Month 12 data cut : July 31, 2024.

*Error bars represent 95% confidence intervals. **n=21 and 20 and 6 months and 12 months, respectively for cohort 2.

ADOA, autosomal dominant optic atrophy; LCVA, low-contrast visual acuity; RNFL, retinal nerve fiber layer; SE, standard error.

Retinal ganglion cells rely heavily on mitochondrial function to meet the high metabolic demands required for visual signaling

OPA1 protein in ganglion cell mitochondria is critical for normal mitochondrial function, efficient ATP energy production, and cellular health

In ADOA, OPA1 protein deficiency leads to mitochondrial stress, ganglion cell dysfunction, and impaired vision

Loss of OPA1 disrupts mitochondrial dynamics, reduces energy production, and increases susceptibility to ganglion cell death

Flavoprotein fluorescence: A promising biomarker for mitochondrial stress in patients with ADOA

OcuMet Beacon quantifies mitochondrial flavoprotein fluorescence, a well-studied precursor of retinal cell death¹

- OcuMet Beacon is a non-invasive assessment to detect retinal metabolic function in a patient's eye
- Under oxidative stress, mitochondrial flavoproteins emit increased fluorescence when stimulated with blue light
- OcuMet Beacon quantifies this fluorescence to generate a retinal FPF score
- FPF functions as a promising biomarker for mitochondrial stress *in vivo*

Representative OcuMet Beacon FPF report

ADOA, autosomal dominant optic atrophy; dB, decibel; FPF, flavoprotein fluorescence; G, global; INF, inferior; N, nasal; NAS, nasal; NI, nasoinferior; NS, nasosuperior; OD, right eye; ONH, optic nerve head; OS, left eye; SUP, superior; T, temporal; TI, tempoinferior; TMP, temporal; TS, temposuperior; y, year.

1. Chen A et al. Eye 2021; 35 (1): 74–92.

Mitochondrial stress as measured by FPF score is higher in patients with ADOA

FPF scores are higher across all sectors in patients with ADOA compared to healthy controls

FPF scores are higher in advanced ADOA despite reduced pRNFL thickness

FPF scores are higher across all sectors in patients with ADOA compared to healthy controls

*ADOA data obtained from patients enrolled in the FALCON study. [†]Healthy control data supplied by OcuSciences. [‡]n=38 eyes (19 patients with ADOA). Baseline optic FPF values are presented for patients with ADOA. ADOA, autosomal dominant optic atrophy; dB, decibel; FPF, flavoprotein fluorescence; GSU, grayscale units; pRNFL, peripheral retinal nerve fiber layer; SD, standard deviation.

High FPF scores are correlated with lower VA at baseline and Month 12 in FALCON patients

High FPF scores suggest greater mitochondrial stress in patients with ADOA who have reduced VA

Patients aged 18–40 years and those with the highest baseline VA show the greatest increase in FPF scores over 12 months

Percent change in normalized FPF score at Month 12

Data suggest that patients with ADOA with the highest VA show the largest increase in mitochondrial stress over 12 months

Month 12 data cut: July 31, 2024. Baseline is defined as the value obtained from the baseline visit assessment. Normalized values are created by dividing the OcuMet Beacon value with corresponding RNFL. ADOA, autosomal dominant optic atrophy; CI, confidence interval; FPF, flavoprotein fluorescence; logMAR, log of the minimum angle of resolution; RNFL, retinal nerve fiber layer; VA, visual acuity.

Conclusions

Patients with ADOA with high baseline VA experienced a 5.1 letter loss in LCVA over 12 months LCVA decline occurred independently of RNFL changes, suggesting other factors may be responsible for short term changes in VA

Mitochondrial stress, as measured by FPF score, is elevated in patients with ADOA

FPF is a promising novel biomarker for mitochondrial stress, and offers a measurable outcome to evaluate the efficacy of future treatments targeting retinal mitochondrial dysfunctions

Restoring mitochondrial function by increasing OPA1 protein has the potential to slow or even halt ADOA disease progression

Acknowledgements

This study was supported by Stoke Therapeutics. We thank investigators, health care providers, site staff and patients who participated in the study.

Restoring OPA1 protein levels may offer a promising strategy to improve patient outcomes in ADOA

Increasing OPA1 protein has the potential to slow or prevent mitochondrial stress and ganglion cell degeneration, thereby halting vision loss

ADOA, autosomal dominant optic atrophy; OPA1, OPA1 mitochondrial dynamin like GTPase. Ng WSV et al. Ther Adv Rare Dis 2021; 2: 26330040211029037.